– IMPROVE-ISCHEMIA, a randomized, placebo-controlled trial, with topline data expected in 4Q 2023 –
– Additional Phase 2 data read-outs expected in 4Q 2023, including topline from the IMPROVE-HCM in non-obstructive hypertrophic cardiomyopathy and interim data from IMPROVE-DiCE in cardiometabolic heart failure with preserved ejection fraction (HFpEF) –
BOSTON, Aug. 16, 2023 (GLOBE NEWSWIRE) -- Imbria Pharmaceuticals, Inc., a clinical stage, cardiometabolic company dedicated to developing innovative therapies designed to improve patient symptoms and function by enhancing cellular energetics, today announced that it has completed enrollment in the IMPROVE-ISCHEMIA Phase 2 placebo-controlled clinical trial of the investigational therapy, ninerafaxstat, in patients with stable angina. Imbria expects to report topline results from this trial in the fourth quarter of 2023.
“The randomized, placebo-controlled IMPROVE-ISCHEMIA trial will provide detailed insights into the anti-ischemic effects of ninerafaxstat in symptomatic patients with chronic coronary syndromes, including the burden of angina," said Juhani Knuuti, M.D., Ph.D., Professor and Director of Turku PET Centre in Turku, Finland and chief investigator of the IMPROVE-ISCHEMIA trial. “Given the large projected future increases in the prevalence of ischemic heart disease and the limited level of therapeutic innovation, there is a pressing need to address the high symptomatic burden of angina with novel effective oral therapies.”
“Ninerafaxstat has a unique mode of action that is complementary to the current standard of care, such as beta blockers and calcium channel blockers. This could give physicians and patients an additional option to control angina symptoms without adversely impacting hemodynamics,” said Jai Patel, MRCP (U.K.), chief medical officer of Imbria. “We look forward to sharing topline data from the trial in the fourth quarter of this year.”
Imbria currently has two additional ongoing Phase 2 clinical trials with ninerafaxstat: IMPROVE-HCM, a randomized, placebo-controlled clinical trial in patients with non-obstructive hypertrophic cardiomyopathy (nHCM) with topline data expected in the fourth quarter of 2023, and IMPROVE-DiCE, an open label clinical trial, which is currently enrolling patients with cardiometabolic heart failure with preserved ejection fraction (HFpEF) with interim data also expected in the fourth quarter of 2023.
About
IMPROVE-ISCHEMIA
IMPROVE-ISCHEMIA is a randomized, double-blinded, placebo-controlled, Phase 2
trial evaluating the safety, anti-ischemic and anti-anginal effects of
ninerafaxstat administered for 8 weeks in patients with stable angina.
About
Stable Angina
Stable angina is characterized by recurrent episodes of reversible cardiac
oxygen demand/supply mismatch typically resulting in pain or heaviness in the
anterior chest, epigastrium, neck, lower jaw, shoulder and/or either arm. In
some patients, breathlessness may be the only symptom of angina, or it may be
accompanied by fatigue, faintness, nausea, and restlessness resulting in poor
quality of life. Stable angina is usually precipitated by physical exertion,
and may be triggered by cold weather, emotional stress or after a heavy meal.
In the U.S. alone, the overall prevalence of stable angina is estimated at approximately 4% of all adults (> 10 million, Tsao et al., Circulation 2023) with 500,000 new cases of angina occurring annually.
Angina may, in a minority of patients, be due to obstructive epicardial coronary artery disease. In such cases invasive revascularization procedures such as percutaneous coronary intervention or coronary artery bypass surgery may improve symptoms, however within 5 years over half of patients develop recurrent angina or anginal equivalent symptoms (Stone et al., J Am Coll Cardiol 2023). In contrast, most patients with stable angina have ischemia due to non-obstructive causes, such as coronary microcirculatory dysfunction, which are not amenable to coronary revascularization, with multiple mechanisms co-existing in some patients.
Traditionally, pharmacological treatment of angina has focused on manipulating hemodynamics to reduce cardiac oxygen demand by lowering blood pressure, cardiac contractility, and/or heart rate using beta blockers, calcium channel antagonists, and nitrates frequently in combination. However, when titrated to effect, these agents often reach a plateau of hemodynamic suppression, where adding further dose increments or agents with a similar hemodynamic mechanism of action confers little additive symptomatic benefit, while adverse effects increase, which may limit tolerability and prevent adequate symptom relief.
Although cardiac ischemia is a metabolic disorder disrupting cellular energetics, there are currently no approved pharmacological therapies in the U.S. which directly address this by targeting the cardiomyocyte. Such an approach may have the potential for synergy with existing hemodynamic approaches across a breadth of ischemic mechanisms to achieve optimal relief of angina, maximize patient function and improve quality of life.
About
ninerafaxstat
Our lead product candidate, ninerafaxstat, is an innovative treatment for
cardiac diseases characterized by an imbalance of energy supply and demand in
the heart. To maintain normal pump function and cell viability, the heart
requires substantial amounts of energy, which is produced in the form of ATP.
The heart normally uses two primary fuels for energy generation: fatty acids
and glucose. Ninerafaxstat, a partial fatty acid oxidation (pFOX) inhibitor,
acts to shift the heart's preference from fatty acids towards glucose. This
shift in metabolism leads to more efficient energy generation with the
potential for improved cardiac function both at rest and during exercise.
Currently, ninerafaxstat is in Phase 2 clinical development for three
indications: nHCM, stable angina, and HFpEF.
About
Imbria
Imbria is a privately held, clinical stage company developing novel therapies
for patients with life-altering cardiometabolic disorders. Our clinical stage
pipeline is focused on restoring or improving the cell’s ability to produce
energy in cardiovascular disorders where energetic impairment is a fundamental
contributor to symptoms and functional deficits. The lead product candidate,
ninerafaxstat, is currently in Phase 2 clinical development in three
indications: nHCM, stable angina, and HFpEF. For additional information, please
visit www.imbria.com.
Contact:
Komal Joshi
Imbria Pharmaceuticals, Inc.
kjoshi@imbria.com